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Scientific Progress and Accomplishments 

 

This research project pursued theoretical understanding of magnetic correlation in both the graphene 

and the newly emerging topological insulator based structures for potential device applications.  

Highlights include new device concepts for low-power magnetic switch with all electrical control, 

electrically modulated domain wall transfer, sensitive room-temperature detection of magnetic fields and 

THz/far-IR radiation, as well as an unusual giant magnetoresistive effect with a single magnetic barrier.   

 We explored electrically controlled magnetic correlation in graphene based composite structures 

for potential device applications.   Prompted by recent studies of the Kondo effect in graphene 

that illustrated a strong influence of localized spin moments (associated with vacancies) through 

their interaction with the itinerant electrons, we investigated the role of carrier-impurity exchange 

interaction in formation of magnetic phase states of graphene with vacancies and modification in 

graphene-based composite structures. Our theoretical analysis based on a mean field model 

showed that the electronic free energy in graphene is indeed modified by the exchange interaction 

with localized spin moments.  The calculation further revealed that at low temperatures a phase 

transition to antiferromagnetic (AF) ordering of the magnetization occurs, which in turn lead to a 

band gap opening between the conduction and valence bands.  The AF phase transfer also has a 

significant impact on magnetic properties of graphene based composite structures.  In a sandwich 

configuration (i.e., graphene placed in the middle), graphene is found to mediate the exchange 

bias field between two adjacent ferromagnetic (FM) layers.  Accordingly, the exchange bias field 

can be altered and even reversed by modulating electronic properties of graphene.  Our 

preliminary results thus far demonstrated that a sufficiently large vacancy concentration induces 

antiparallel alignment of two FM magnetizations, while the direction of the exchange bias field 

flips at low concentrations favoring parallel alignment.  At the same time, it was shown that a 

high electron density can drastically enhance the strength of the effective magnetic field.  As the 

electron density in graphene can be manipulated electrically, the observed phenomenon may be 

utilized for electrically controlled magnetization reversal. 

 We proposed and theoretically analyzed a new scheme for electrically controlled magnetic 

domain wall transfer in graphene-ferromagnet composite structures for magnetoelectronic device 

applications. Unlike the conventional approach based on spin-momentum transfer, the proposed 

concept takes advantage of the proximity exchange interaction between graphene electrons and 

magnetic ions in a ferromagnetic layer and the fact that the resulting “effective magnetic field” 

can be manipulated by merely modulating the electron density in graphene (i.e., no current 

flow/low power).   Figure 1 shows the structure under consideration.  It consists of monolayer 

graphene and a thin ferromagnetic insulator (FMI) on top. Then, two ferromagnetic metallic 

Chemical potential (meV) 

Figure 1: Schematic illustration of domain wall transfer in the proposed graphene-ferromagnet structure.  The 

imbalance in the graphene electron density (thus, net electron spin polarization) can cause an effective magnetic 

field in the ferromagnetic insulator layer (FMI) in contact via the exchange interaction.  Hence, the domain wall 

can be moved toward the desired direction by controlling the gate biases, Vg1 and Vg2.  
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(FMM) gates are formed with opposite magnetization directions.  Magnetization of the FMI 

regions (i.e., domains) under the gate is determined by that of the respective FMM.   Hence, a 

domain wall is formed in the middle region.  Electrical biases applied to the gate can vary the 

electronic density in the corresponding area of graphene.  At zero (or identical) bias, both 

magnetic domains (with opposite magnetization) contribute equally to the spin polarization of 

graphene electrons in the middle region, negating each other.  On the other hand, net polarization 

can be achieved when an imbalance in the electron density occurs (i.e., via uneven gate biases).  

This nonzero spin polarization acts like an effective magnetic field Heff in the ungated region of 

FMI, pushing the domain wall in the desired direction.  A preliminary estimate shows that Heff of 

approx. 1000 oe is attainable for the bias of µL-µR=200 meV (between two gated regions in 

graphene) and the FMI thickness of 1 nm, sufficiently large for realistic application.   More 

detailed calculations are currently under way for accurate evaluation of the performance under 

realistic device conditions.  

 We proposed and theoretically analyzed a graphene-based spin capacitor and its potential 

application to sensitive magnetic field detection at room temperature.  The main characteristic 

feature of the proposed device is essentially similar to a spin FET using graphene ribbon as the 

channel but has only one ferromagnetic (FM) terminal (say, source or drain).   Thus, it forms a 

capacitor between the gate and FM S/D contacts, which stores not only the electric charge under 

an appropriate electrical bias but also spin polarization of those electrons (injected from the FM 

S/M) and their time evolution. Unlike the electric charge, spin polarization changes as a function 

of time due to spin precession in a magnetic field and decoherence.  As soon as the sign of the 

gate bias is reversed, the electrons leave the capacitor with rotated and reduced spin polarization 

which, combined with the fixed magnetization of the FM S/D, can be detected electrically via the 

terminal current.  Since the degree of rotation and decay is determined by the duration of electron 

spin exposure to the magnetic field as well as the strength and orientation of magnetic field in 

reference to the injected electron spin polarization, a series of measurements with differing 

detector orientation and exposure time can determine the strength and direction of the external 

(i.e., target) magnetic field.  The proposed device provides a significant advantage over the 

schemes based on transient two-terminal measurement as the output signal is immune from the 

spin dephasing originating from the dispersion in transit time.  Assuming the frequency 

measurement error of the order of a few per cent and the electron spin relaxation time of 100 ns at 

300 K (a conservative choice), this device is capable of detecting magnetic fields in the 10 mOe 

(i.e., 0.01 Oe) range at the ambient temperature without involving any cooling or special 

equipment. 

 We investigated transverse redistributions of the electrons and holes in intrinsic graphene ribbons 

under the influence of crossed electric and magnetic fields, i.e., the magnetoconcentration effect. 

Specifically, we examined a monolayer graphene ribbon in the xy plane confined by the width W 

in the y direction; the electric E and magnetic H fields were applied along the x and z axes, 

respectively. The magnetic field was considered to be classically strong, i.e., it does not lead to 

the formation of Landau levels. When the ribbon width exceeds the electron hole de Broglie 

wavelength, quantization of the electron and hole energy spectrum is not essential and can be 

disregarded.  The ribbon length in the x direction was assumed to provide the longest dimension 

allowing a 1D treatment of the problem, with the inhomogeneity along the y axis. The 

nonequilibrium inhomogeneous redistribution of carriers under the influence of the fields was 

obtained by solving the Boltzmann kinetic equation within the local quasiequilibrium 

approximation.  The calculation illustrates that an effective control of the carriers can be achieved 

from deep depletion to accumulation modes depending on the properties of the ribbon edges, 

provided electron-hole recombination/generation rates at the edges are different from those inside 

the ribbon. The current-voltage characteristics reflect the behavior of the carrier redistributions 

across the ribbon.  Accordingly, interesting effects such as population inversion (accumulation 
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mode) and induced transparency (depletion mode) may be achieved with potential implication to 

THz device applications. 

 We extended the investigation of the proximity exchange interaction with ferromagnetic materials 

to another 2D electronic system, namely the surface states of a 3D topological insulator (TI).  One 

crucial property of TIs is the very strong spin-orbit coupling that leads to the intimately 

intertwined magnetic interactions and electron orbital motions.  Consequently, the focus was to 

exploit the feasibility of current control via spin magnetic effects. The test structure has a single 

FMI layer of finite width placed on a TI, whose magnetization orientation can be varied in 

reference to the incident current (see Fig. 2).  Accordingly, the FMI layer in this design was 

envisioned to play the role of a tunnel barrier with a controlling knob (analogous to the gate).  A 

theoretical analysis based on a tight-binding effective Hamiltonian demonstrated that a single 

ferromagnetic barrier with variable magnetization can indeed modulate the electrical current on 

the surface of a TI.  Numerical estimates suggest that the channel resistance change of a few 

hundred percent may be achieved even at room temperature in the ballistic tunnel transport 

regime.  The key condition is sufficient exchange coupling at the TI/FMI interface (> 20 meV), 

which appears practically attainable in the current technology.  The induced change in the 

channel resistance as a function of the magnetization direction is expected to find realistic 

applications in both memory and logic devices. 

 We applied the magneto-electric phenomena of TI surface states to the prediction/discovery of a 

linear photo-galvanic effect (PGE) at the TI/FMI interface [Fig. 3(a)]. Theoretical analysis 

indicates that dc flow of photo-excited carriers can be achieved by asymmetric TI surface band 

distortion under the influence of both symmetry-breaking proximate exchange interaction and 

spin-independent parabolicity of the dispersion law [Fig. 3(b,c)]. Subsequent momentum-space 

imbalance in the generation of electron/hole pairs (with opposite group velocities) results in net 

photocurrent whose direction is also controlled by the chemical potential.  The proposed PGE 

correlates with light absorption in a wide frequency range (from a few meV to hundreds of meV) 

and possesses a pronounced resonant response to the photon energy about two times the TI 

chemical potential shift from the Dirac point – thus, tunable by an electrical gate bias (Fig. 4).   

Moreover, it is invariant to the sign of light circular polarization (i.e., no polarized radiation 

necessary). The exceptionally strong peak photocurrent of the order of tens of A/cm may be 

achieved with the illumination power of 1 W/cm2 in the THz range (estimate based on Bi2Se3; 

see Fig. 4). The proposed TI/FMI structures may have significant advantages over the 

conventional devices in the detection of long-wavelength photons beyond the thermal noise limit. 

Figure 2: (Left) Schematic illustration of the proposed TI/FMI system. (Middle) Rotation of the magnetization 

direction around the x (M||y  M||z) or the z (M||y  M||x) axes leads to modification in the bandstructure of 

the TI surface states (i.e., the tunneling barrier).  (Right) Relative ratio of surface resistance as a function of 

Fermi energy and gate bias when the magnetization rotates 90 (M||y  M||{x,z}).  The solid lines represent the 

values of RM||z/RM||y, while the dashed lines show those of RM||x/RM||y.  A 30-nm FMI strip is considered at room 

temperature along with the exchange energy of 40 meV at the TI/FMI interface.  Apparently, the surface channel 

resistance can change by nearly an order of magnitude through magnetization rotation.  
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       Chemical potential (meV)          Chemical potential (meV) 

Figure 3: Schematic illustration of proposed PGE. (a) TI/FMI 

hybrid structure. The red arrows indicate the incident IR 

radiation; the block arrow denotes the magnetization 

direction. (b,c) Photocurrent generation in n-type and p-type 

TIs, respectively. The solid lines illustrate only the proximity 

effect on the TI surface band structure (i.e., the displacement 

of kx). The dashed lines show the same bands when the 

quadratic term is also included. The shaded area denotes the 

filled electronic states. 

Figure 4: Photocurrent density calculated at (a) 300 

K and (c) 4K versus the chemical potential with 

different excitation energies: 4.4 meV, 13.7 meV, 

50 meV, and 135 meV for curves 1, 2, 3 and 4, 

respectively. All calculations assume the relaxation 

time of 1 ps and the proximate exchange energy of 

40 meV along with material parameters of Bi2Se3.  

 




